Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Dielectric characteristics of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics at microwave frequencies

Ching-Fang Tseng^a, Hsin-Han Tung^b, Chen-Kang Hsu^b, Cheng-Chi Yu^c, Cheng-Hsing Hsu^{b,*}

^a Department of Electronic Engineering, National United University, No. 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan

^b Department of Electrical Engineering, National United University, No. 1 Lien-Da, Kung-Ching Li, Miao-Li 36003, Taiwan

^c Department of Communication Engineering, Feng Chia University, No. 100 Wenhwa Rd., Seatwen, Taichung 40724, Taiwan

ARTICLE INFO

Article history: Received 1 April 2010 Received in revised form 12 April 2010 Accepted 15 April 2010 Available online 22 April 2010

Keywords: (Mg_{1/2}Zn_{1/2})Al₂O₄ ceramics Microwave dielectric properties

ABSTRACT

Microwave dielectric properties and microstructures of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics prepared by conventional solid-state route have been studied. The dielectric constant values (ε_r) saturated at 7.1–8.6. The $Q \times f$ values of 2000–95,000 GHz can be obtained when the sintering temperatures are in the range of 1480–1600 °C. The temperature coefficient of resonant frequency τ_f was not sensitive to the sintering temperature. The ε_r value of 8.6, the $Q \times f$ value of 95,000 GHz, and the τ_f value of $-52 \text{ ppm}/^\circ\text{C}$ were obtained for $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics sintering at 1600 °C for 4 h $(Mg_{1/2}Zn_{1/2})Al_2O_4$ is proposed as a suitable material candidate for application in high selective microwave ceramic resonator, filter, and antenna.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recent research has been focusing on developing dielectric materials with a high-quality factor $(Q \times f)$, a high-dielectric constant (ε_r), and a zero temperature coefficient of resonant frequency (τ_f) for use as dielectric resonators and microwave device substrates. High-dielectric constant materials can effectively reduce the size of resonators as the wavelength (λ) in dielectrics is inversely proportional to $\sqrt{\varepsilon_r}$ ($\lambda = \lambda_o/\sqrt{\varepsilon_r}$ where λ_o is the wavelength in vacuum). The inverse of the dielectric loss ($Q=1/\tan \delta$) must be high to achieve prominent frequency selectivity and stability in microwave transmitter components. Moreover, a small temperature coefficient of the resonant frequency is needed to ensure the stability of the microwave components at different working temperatures. Several compounds such as (Zr, Sn)TiO₄, Ba(Mg_{1/3}Ta_{1/3})O₃, and (Mg, Ca)TiO₃ have therefore been developed [1–3].

The A²⁺Al₂O₄ (A: Mg, Zn) ceramic family have been reported to have good microwave dielectric properties and have been of great interest as a potential dielectric resonator for microwave applications in the last decade [4,5]. Appropriate substitutions in the A site of the A²⁺Al₂O₄ ceramic family to form a solid solution were investigated to achieve a high $Q \times f$ value, which allows such compounds to adapt to higher frequency applications [6,7]. The MgAl₂O₄ ($\varepsilon_r \sim 9$, $Q \times f \sim 69,000$ GHz, $\tau_f \sim -50$ ppm/°C) compound exhibits a combination of a high $Q \times f$ and a modest ε_r . In addition, ZnAl₂O₄ ($\varepsilon_r \sim 8.5$, $Q \times f \sim 57,000$ GHz, $\tau_f \sim -79$ ppm/°C) seems to be a good choice as

an end member to form a solid solution with MgAl₂O₄ because Zn²⁺ (0.083 nm) not only shows an ionic radius similar to that of Mg²⁺ (0.078 nm) but also has the same crystal structure. Consequently, it should be of interest to conduct a comprehensive investigation of the (Mg_{1-x}Zn_x)Al₂O₄ ceramic system [7]. However, past experiments to produce (Mg_{1-x}Zn_x)Al₂O₄ ceramics have not discussed the dielectric properties of (Mg_{1/2}Zn_{1/2})Al₂O₄ ceramics.

In this paper $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics using start powders of Al_2O_3 , MgO, and ZnO were synthesized by solid-state method, and the microwave dielectric properties and the microstructures of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics were also investigated.

2. Experimental procedure

A sample of (Mg_{1/2}Zn_{1/2})Al₂O₄ mixed according to the desired stoichiometry was synthesized by conventional solid-state methods from individual high-purity oxide powders (>99.9%): MgO, ZnO, and Al₂O₃. The powders were ground in distilled water for 12 h in a ball mill with agent balls. All mixtures were dried, forced through a 200-mesh sieve, and calcined at 1250 °C for 2 h. The calcined reagent was ground into a fine powder for 12 h. The fine powder, together with the organic binder, was pressed into pellets with dimensions of 11 mm diameter and 5 mm thickness under a pressure of 2000 kg/cm². These pellets were sintered at temperatures of 1480–1600 °C for 2 and 4 h in air. Both the heating rate and the cooling rate were set at 10 °C/min. On other hand, the X-ray diffraction (XRD, Siemens D5000) data of powder and bulk samples were collected using Cu Kα radiation and a graphite monochromator in the 2 θ range of 20–60°. The density of the sintered specimens, as a function of sintering temperature, was measured by the liquid Archimedes method using distilled water as the liquid.

The dielectric constants (ε_r) and $Q \times f$ values at microwave frequencies were measured using the Hakki–Coleman dielectric resonator method, as modified and improved by Courtney [8,9]. The dielectric resonator was positioned between two brass plates to form a cavity-like structure. The test cavity is placed over a thermostat and the temperature range used is +25 to +80°C in which the heating rates were 1 °C/min for heating and the residence time is 10 min at each time. The τ_f (ppm/°C)

^{*} Corresponding author. Tel.: +886 37 381401; fax: +886 37 327887. *E-mail address*: hsuch@nuu.edu.tw (C.-H. Hsu).

^{0925-8388/\$ –} see front matter $\ensuremath{\mathbb{C}}$ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.04.118

Fig. 1. XRD patterns of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics at different sintering temperatures for 4 h.

is calculated by noting the change in resonant frequency as,

$$\tau_f = \frac{f_2 - f_1}{f_1 \left(T_2 - T_1\right)} \tag{1}$$

where f_1 is resonant frequency at T_1 and f_2 is the resonant frequency at T_2 .

3. Results and discussions

Fig. 1 shows the XRD patterns of the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics at different sintering temperatures for 4h. It was observed that $(Mg_{1/2}Zn_{1/2})Al_2O_4$ exhibited a spinel crystal structure. Similar results had been reported as phases only existed for the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ sintered [7]. Similar XRD patterns were detected for the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics with various sintering temperatures. The second phase was not observed at different sintering temperatures because detection of a minor phase by XRD is extremely difficult. In addition, identical XRD patterns were observed for the ceramics irrespective of the sintering temperature.

The plot of bulk density of the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics versus the sintering temperature and time is illustrated in Fig. 2. The density increased with increasing sintering temperature. This was because such a high sintering temperature would cause grain growth resulting in an increase in density. The increase in density may directly affect the microwave dielectric properties.

Fig. 3 demonstrates the dielectric constant of the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics as a function of its sintering temperature and time. The dielectric constant revealed the same trend with the density as higher density means lower porosity that results in higher ε_r value. It increased with the increase of sintering temperature. In this experiment, a maximum dielectric constant

Fig. 2. Dependence of sintering condition of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics on relative density.

Fig. 3. Dependence of sintering condition of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics on dielectric constant.

of 8.6 was obtained for $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics sintered at 1600 $^\circ C$ for 4 h.

The $Q \times f$ value of the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics as a function of its sintering temperature and time is illustrated in Fig. 4. The $Q \times f$ value increased from 2000 to 95,000 GHz as the sintering temperature increased from 1480 to 1600 °C. Many factors are believed to affect the microwave dielectric loss and can be divided into two categories, that is, intrinsic loss and extrinsic loss [10]. Intrinsic losses are mainly caused by lattice vibration modes, while extrinsic losses are dominated by a second phase, oxygen vacancies, grain sizes, and densification or porosity. Because the variation of the $Q \times f$ value was consistent with the density, the degradation of the $Q \times f$ value the same trend with the density, it implies that the variation of $Q \times f$ value was dominated by the change of density.

Fig. 5 shows the temperature coefficient of resonant frequency (τ_f) of the $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics as a function of its sintering temperature. The temperature coefficient of resonant frequency (τ_f) is well known to be related to the composition and the secondary phase of a material. Since the composition remained unchanged and no secondary phase was detected, no significant change in the τ_f value was observed as expected. The τ_f value varied from -41 to -58 ppm/°C for the various sintering temperatures and times. The temperature coefficient of resonant frequency (τ_f) is well known to be related to the composition and the second phase.

Fig. 4. Dependence of sintering condition of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics on quality factor $(Q \times f)$.

Fig. 5. Dependence of sintering condition of $(Mg_{1/2}Zn_{1/2})Al_2O_4$ ceramics on τ_f .

of a material. At 1600 °C, a τ_f value of $-52 \text{ ppm/}^{\circ}\text{C}$ was measured for $(Mg_{1/2}Zn_{1/2})Al_2O_4$ sintered for 4 h.

4. Conclusion

The microwave dielectric properties of (Mg_{1/2}Zn_{1/2})Al₂O₄ ceramics were investigated. Compared to previous reports, a significant improvement in the dielectric properties has been accomplished. Excellent microwave dielectric properties ($\varepsilon_r \sim 8.6$, $Q \times f$ value ~ 95,000 at 14 GHz and τ_f value ~ -52 ppm/°C) can be obtained for (Mg_{1/2}Zn_{1/2})Al₂O₄ sintered at 1600 °C for 4 h. Comparing to past results of $(Mg_{1-x}Zn_x)Al_2O_4$ which possesses $\varepsilon_r \sim 8.56$, $Q \times f \sim 106,000$ GHz, and $\tau_f \sim -63$ ppm/°C at x = 1.0 with sintering temperature 1650 °C for 3 h, new (Mg_{1/2}Zn_{1/2})Al₂O₄ ceramics also can find applications in microwave devices requiring low sintering temperatures and excellent microwave dielectric properties

Acknowledgements

This work was supported by the National Science Council of the Republic of China under grant NSC98-2221-E-239-025 and the National United University Foundation.

References

- [1] S. Nomura, K. Toyama, K. Kaneta, Jpn. J. Appl. Phys. 21 (1982) L624-626.
- G. Wolfram, H.E. Gobel, Mater. Res. Bull. 16 (1981) 1455-1463. [2] G. Wolfram, H.E. Gobel, Mater. Res. I[3] I. Burn, US Patent 4,845,062, (1989).

- [4] W. Lei, W.Z. Lu, J.H. Zhu, X.H. Wang, Mater. Lett. 61 (2007) 4066–4069.
 [5] K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, Appl. Phys. A 81 (2005) 823-826.
- [6] M.A. Petrova, G.A. Mikiricheva, A.S. Novikova, V.F. Popova, J. Mater. Res. 12 (1997) 2584-2588.
- C.W. Zheng, S.Y. Wu, X.M. Chen, K.X. Song, J. Am. Ceram. Soc. 90 (2007) [7] 1483-1486
- B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8 (1960) 402-410. [8]
- W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18 (1970) 476-485. [9]
- [10] B.D. Silverman, Phys. Rev. 125 (1962) 1921-1930.